The Cooper Island Black Guillemot study was recently mentioned in an Associated Press story by Seth Borenstein about researchers who “accidentally” began studying climate change. A number of scientists measuring a biological phenomenon have encountered unanticipated effects from climate change and understood those effects were more important, both biologically and politically, than what originally motivated them to initiate their research. The 44-year Cooper Island study has undergone a number of changes before its current focus on assessing the decadal effects of Arctic warming on seabirds.
When I first landed on Cooper Island in 1975, I had no intention of studying climate change or global warming.
Neither the globe nor the Arctic had warmed in the decades immediately preceding the start of my study. Research at the Cooper Island Black Guillemot colony started as part of a large federal program assessing Alaska’s then largely unknown marine ecosystems in anticipation of leasing offshore waters for oil development. Cooper Island was the furthest north of many seabird colonies in coastal Alaska where biologists documented the extent and basic biology of the state’s seabird resources in the late 1970s. When that program ended in 1981, due to a change of administrations and a less urgent need to move forward with offshore drilling, it had provided sufficient information for the drafting of environmental impact statements.
In 1982, lacking federal funding, and possibly more importantly logistical support, I made the decision to return to Cooper Island to continue the Black Guillemot study. I had developed a real attachment to northern Alaska with its field seasons of 24 hours of daylight and sea ice always visible just offshore. Through annual banding of breeding birds and their nestlings in the late 1970s, I had developed a population of largely known-history and known-age seabirds. I was initially drawn to the study of seabirds having read the works of British ornithologists conducting multi-year studies at a single colony and documenting the life histories of individual birds. Such work is beyond the scope and timeframe of pre-development environmental assessments and of federal agencies, with their frequently shifting agendas.
Only in the third decade of research was there an indication that increasing atmospheric temperatures were affecting the Black Guillemot colony. Earlier snowmelt in the 1990s allowed earlier initiation of breeding. Climate change impacts rapidly increased in the 21st Century as decreasing sea ice and increasing sea surface temperatures reduced the guillemots’ preferred prey and greatly reduced breeding success. The least nuanced sign of Arctic warming, polar bears stranded on the island approaching our field camp, began in 2002 and this will certainly occur again this summer.
While monitoring the effects of climate change will continue to be the focus of the work, the study is now proceeding in ways never anticipated in 1975. Since 2011, we have deployed biologgers on the bands of guillemots to measure diving behavior during breeding and location and activity of birds during the nonbreeding season. That work is being continued and analyzed as part of the Sentinels of Sea Ice (SENSEI) project, which this fall will have our collaborators from France’s National Center for Scientific Research (CNRS) hiring a post-doc to examine our demographic database.
Vicki Friesen of Queen’s University in Kingston, Ontario has a graduate student, Drew Sauve, examining the genetics of individual guillemots and the heritability of the metrics we have obtained on breeding biology. Drew recently completed a master’s degree on the heritability of timing of egg laying and is beginning a doctoral program utilizing the Cooper Island colony and database. He will be joining me on the island later this month to gather additional genetic material.
As I walked around the colony this past week in this 44th year of the study, determining nest ownership and dates of egg laying, it is extremely satisfying to know the data is part of a data set spanning six generations of guillemots and can provide unparalleled insights into the biology of an Arctic seabird experiencing a rapidly changing environment.